

Cathode configurations

		111 2 × LARC [®] PLUS, TiCN option ava		411 3 × LARC [®] , additional options ava	ilabla	
	Coatings	Option	Cathodes	Option	Cathodes	
1	TiN	Standard	-, Ti	ECO	Ti, -, -	
•		otunduru	,	SCIL	LGD, -, -, Ti SCIL	
2	TiCN	TICN	-, Ti	ECO	Ti, -, -	
3	TiAIN	Standard	Al, Ti	ECO	Ti, Al, -	
			,	TURBO	Ti, Al, -, AlTi33	
4	TIAICN			ECO	Ti, Al, -	
5	Altin	Standard	Al, Ti	ECO	Ti, Al, -	
				TURBO	Ti, Al, -, AlTi33	
6	CrN	Standard	-, Cr	ECO	Cr, -, -	
7	CrTiN	Standard	Cr, Ti	ECO	Ti, -, Cr	
8	ТарСТ			SCIL	LGD, -, -, CrTi50 SCIL	
9	ZrN	Standard	Zr, Ti	ECO	Ti, -, Zr	
10	AlCrN			LACS	-, -, Cr, AlCr30 SCIL	
11	Omnis	Standard	Al, Cr	ECO	Al, AlCr30, Cr	
				ECO	AlCr35, AlCr35, AlCr35	
12	AlticrN	Standard	AlCr30, Ti	ECO	Ti, Al, Cr	
13	nACo	Standard	AlSi12, Ti	ECO	Ti, AlSi18, -	
				TURBO	Ti, AlSi18, -, AlTi33	
14	nACRo	Standard	AlSi12, Cr	ECO	-, AlSi18, Cr	
				TURBO	-, AlSi18, Cr, AlTi33	
15	TiXCo3	Standard	AITi33, TiSi20	ECO	Ti, Al, TiSi20	
				TURBO	Ti, Al, TiSi20, AlTi33	
16	TiXCo4			TURBO	Ti, Al, TiSi20, AlCr30	
17	PSiX			ECO	Ti, Al, TiSi20	
18	BorAC			ECO	Al, AlCrB20-10, Cr	
				ECO	AlCr35, AlCrB20-10, AlCr35	
19	TiBor			LACS	Ti, -, -, TiB2 SCIL	
20	DLC1: TiCN + a-C:H:Me	TiCN	-, Ti	ECO	Ti, -, -	
21	DLC2: TiN + a-C:H:Si			SCIL & DLC	LGD, -, -, Ti SCIL	
22	DLC2: CrN + a-C:H(:Si)			DLC	-, -, Cr	
23	DLC3: Cr + ta-C/a-C				-, -, Cr, C SCIL	
24	nACoX			TURBO & OXI	Ti, AlSi18, AlCr45, AlTi33	

Further coatings and cathode configurations on request

	nar HiPIMS /D mode	1011 4 × Planar ARC, additional options available
Cathoo	des	Cathodes
Ti, Ti		Ti, -, Ti, -
		Ti, -, Ti, -
		Ti, AlTi40, TiAl50, AlTi40
		Ti, TiAl25, Ti, TiAl25
		Ti, AlTi40, AlTi33, AlTi40
Cr, Cr		Cr, -, Cr, -
		Ti, Cr, Ti, Cr
		Ti, Zr, Ti, Zr
		-, AlCr36, AlCr36, AlCr36
		Cr, AlTi40, AlCr36, AlTi40
		TiSi20, AlTi40, TiSi25, AlTi40
		TiSi20, AlTi40, TiSi25, AlTi40
		TiSi20, AlTi40, TiSi25, AlTi40
		-, AlCr36, AlCrB20-10, AlCr36
		Ti, -, Ti, -
Cr, Cr		-, Cr, -, Cr

Coatings for cutting tools

			Turning	Milling			Gear cutt	ing			
WORKPIECE MATERIAL			Inserts	Inserts	Shank tools	Micro tools	Hobs	Pinion cutting	Skiving	Fly cutters, stick blades	
Steels	Dry	A B	nACo AITiN	Omnis BorAC	Omnis BorAC	AlCrN -	Omnis BorAC	Omnis BorAC	Omnis BorAC	TiXCo4 AlTiCrN	
	Wet	A B	nACo AITiN	AlTiCrN Omnis	AlTiCrN Omnis	AICrN -	Omnis AlTiCrN	Omnis AlTiCrN	Omnis BorAC	TiXCo4 AlTiCrN	
Steels hardened < 55 HRC	Dry/Wet	A B	TiXCo4 nACo	TiXCo4 nACo	TiXCo4 nACo	TiXCo3 -	-	-	TiXCo4 BorAC	-	
Steels hardened > 55 HRC	Dry	A B	TiXCo3 PSiX	TiXCo3 PSiX	TiXCo3 PSiX	TiXCo3 -	-	-	TiXCo4 PSiX	-	
	Wet	A B	PSiX nACo	PSiX nACo	PSiX nACo	TiXCo3 -	-	-	TiXCo4 PSiX	-	
Stainless steel < 45 HRC	Dry	A B	nACo AITiN	nACo AlTiN	nACo AlTiN	nACo -	-	-	- -	-	
	Wet	A B	PSiX AITiN	PSiX AlTiN	PSiX AlTiN	nACo -	-	-	-	-	
Stainless steel > 45 HRC	Dry	A B	TiXCo3 nACo	TiXCo3 PSiX	TiXCo3 PSiX	TiXCo3 -	-	-	-	-	
	Wet	A B	TiXCo3 TiAICN	TiXCo3 PSiX	TiXCo3 PSiX	TiXCo3 -	-	-	- -	-	
Superalloys Ni-based	Dry/Wet	A B	nACoX AITiN	nACoX PSiX	PSiX TiXCo4	TiXCo3 -	-	-	- -	-	
Superalloys Ti-based	Dry/Wet	A B	nACo TiBor	nACo TiBor	nACo TiBor	nACo TiBor	-	-	- -	-	
Cast iron	Dry/Wet	A B	nACo AlTiN	nACo AITiN	nACo AlTiN	nACo	-	-	-	-	
Aluminium Si > 12%	Dry/Wet	A B	nACRo TiBor	nACRo TiBor	nACRo TiBor	nACRo TiBor	-	-	-	-	
Aluminium Si < 12%	Dry/Wet	A B	DLC3 TiBor	DLC3 TiBor	DLC3 TiBor	DLC3 TiBor	-	-	-	-	
Copper, bronze, brass	Dry/Wet	A B	CrN DLC2	CrN DLC2	CrN DLC2	CrN DLC2	-	-	-	1	
Plastic	Dry/Wet	A B	-	-	DLC3 TiBor	-		-	-	-	
Graphite	Dry	A B	DLC3 -	DLC3 -	DLC3 -	DLC3 -	-	-	-	-	
	Wet	A B	TiXCo4 DLC3	TiXCo4 DLC3	TiXCo4 DLC3	TiXCo3 DLC3	-	-	-	-	
Carbon fiber reinforced polymer	Dry/Wet	A B	-	-	DLC3 TiXCo4	DLC3 TiXCo3	-	2	-	-	
Wood	Dry/Wet	A B	-	DLC2 CrN	DLC2 CrN	-	-	-	-	-	

Sawing		Drilling		Deep hole drilling	Reaming	Broaching	Tapping	
Saw blades	Band saws	Drilling	Micro tools				Taps, thread cutters	Tap forming, thread forming
AlTiCrN AlTiN	nACo TiAICN	AITiN PSiX	AlTiN TiXCo3	AITiN TiXCo3	nACo TiXCo3	TiN TiCN	TiN TiCN	TapCT TiCN
AlTiCrN AlTiN	nACo TiAICN	AlTiN PSiX	AlTiN TiXCo3	AITiN TiXCo3	nACo TiXCo3	TIN TICN	TiN TiCN	TapCT TiCN
nACo AITiN	nACo AITiN	PSiX nACo	TiXCo3 nACo	-	nACo TiXCo3	-	-	-
-	-	TiXCo3 PSiX	TiXCo3 -	-	-	-	-	-
-	-	-	-	-	-	-	-	-
AITIN TIAICN	nACo TiAICN	AlTiN TiXCo3	AlTiN TiXCo3	AITiN TiXCo3	nACo TiXCo3	-	TiN TiCN	TapCT TiCN
AITIN TIAICN	nACo TiAICN	AlTiN TiXCo3	AlTiN TiXCo3	AITiN TiXCo3	nACo TiXCo3	-	TiN TiCN	TapCT TiCN
-	-	AlTiN TiXCo3	AlTiN TiXCo3	AITiN TiXCo3	nACo TiXCo3	-	TiN TiCN	-
-	-	AlTiN TiXCo3	AlTiN TiXCo3	AITiN TiXCo3	nACo TiXCo3	-	TiN TiCN	-
AlTiCrN AlTiN	AITiCrN AITiN	TiXCo4 nACoX	-	-	-	-	TiCN TiAICN	-
AlTiCrN AlTiN	AITiCrN AITiN	TiXCo3 AlTiN	-	-	TiBor PSiX	-	TiCN TiAICN	-
-	-	TiXCo3 nACo	-	TiN TiCN	TiXCo3 nACo	-	TICN TIAICN	-
nACRo AITiCrN	nACRo AITiCrN	nACRo TiBor	nACRo TiBor	-	TiBor PSiX	-	TiCN TiAICN	-
DLC3 ZrN	ZrN -	TiBor ZrN	TiBor ZrN	-	TiBor DLC3	-	TiCN TiBor	TiN ZrN
CrN -	CrN -	TiAICN CrN	-	-	TiXCo3 nACo	-	TiCN TiAICN	TiN ZrN
-	-	TiXCo3 DLC2	-	-	-	-	-	-
-	-	DLC3 TiXCo4	DLC3 TiXCo4	-	-	-	-	-
-	-	TiXCo4 DLC3	TiXCo4 DLC3	-	-	-	-	-
DLC3 -	-	DLC3 TiXCo3	DLC3 TiXCo3	-	-	-	-	-
DLC2 CrN	-	DLC2 TiXCo3	-	-	-	-	-	-

Coatings for chipless forming

		Fine- blanking	Punching	Injection mo	olding	Forming, embossing	Deep drawing	Extrusion
TOOL MATERIAL				Plastic	Aluminum			
HSS	A B	FeinAl Plus* FeinAl*	FeinAl Plus* FeinAl*	-	-	CrN TiBor	FeinAl* FeinAl Plus*	nACRo FeinAI*
Carbide	A B	FeinAl Plus* FeinAl*	FeinAl Plus* FeinAl*	-	-	-	-	-
Steels unalloyed	A B	-	-	CrN TiN	AlTiCrN nACRo	-	-	-
Steels harde- ned	A B	FeinAl Plus* FeinAl*	FeinAl Plus* FeinAl*	CrN TiN	AlTiCrN nACRo	CrN TiBor	FeinAl* FeinAl Plus*	nACRo FeinAl*
Aluminum Si > 12%	A B	-	-	CrN TiN	-	CrN TiBor	-	-
Aluminum Si < 12%	A B	-	-	-	-	CrN TiBor	-	-
Copper, bronze, brass	A B	-	-	-	-	CrN TiBor	-	-

A primary recommendation

B secondary recommendation

* Trademark owned by Feintool Group

Coatings for components

		Machine parts ¹	Medical co	mponents ²		Tribology	Decorative materials
WORKPIECE MATERIAL			Medical implants	Surgical, dental instruments	Anti-bacterial medical components		
Steels unalloyed < 1000 N / mm²	A B	-	-	-	-	DLC2 DLC3	
Steels unalloyed > 1000 N / mm²	A B	-	-	-	-	DLC2 DLC3	-
Steels hardened < 55 HRC	A B	CrTiN -	-	-	-	DLC2 DLC3	-
Steels hardened > 55 HRC	A B	CrTiN -	-	-	-	DLC2 DLC3	-
Stainless steel	A B	-	-	DLC2 DLC3	TiN-AB DLC-AB	DLC2 DLC3	Custom -
Stainless steel > 45 HRC	A B	-	-	-	-	DLC2 DLC3	Custom -
Superalloys Ni-based	А	-	-	-	-	DLC2	-
Superalloys Ti-based	A B	-	Ti2N ZrN	DLC3 DLC2	-	DLC2 -	-
Cast iron	А	CrN	-	-	-	-	-
Aluminum Si < 12%	А	CrN	-	-	-	-	-
Copper	A B	-	-	-	TiN-AB DLC-AB	-	Custom -
Bronze, brass	A B	-	-	-	TiN-AB DLC-AB		Custom -

A primary recommendation

B secondary recommendation

¹ in abrasive and corrosive environment such as gears, water pumps, tool holders ² following PLATIT coatings are tested for biocompatibility and certified accordingly: AlTiN, CrN, DLC, TiCN, TiN, ZrN

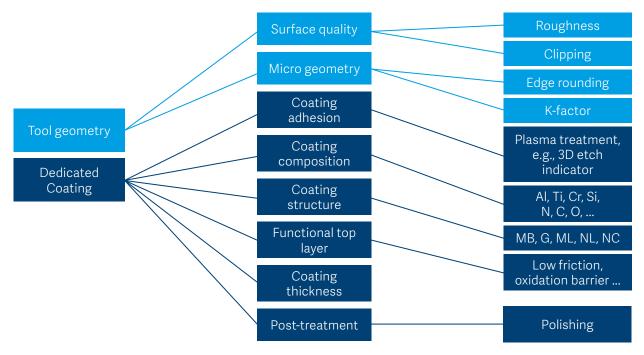
Coating properties

		Color	Nano-hard- ness [GPa] by Fisher Nanoindentor	Coating thickness [µm]	Coefficient of friction [µ] PoD (at RT, 50% humidity)	Max. service temperature [°C]
1	TiN	Gold	24-26	1–10	0.4	600
2	TiCN	Grey	36-38	1–3	0.25	450
3	TiAIN	Violet grey	36-38	1–5	0.5	700
4	TiAICN	Red violet	34-36	1–5	0.25	450
5	AITIN	Blue grey	36-38	1–5	0.6	900
6	CrN	Silver	21-23	1–10	0.5	700
7	CrTiN	Satin silver	28-30	1–10	0.4	700
8	ТарСТ	Silver	28-30	1–5	0.4	700
9	ZrN	White gold	21-23	1–5	0.4	550
10	AlCrN	Grey	36-38	1–5	0.6	900
11	Omnis	Grey/Anthracite	33-35	0.3-6.0	0.5	1,100
12	AlTiCrN	Grey	36-38	1–5	0.5	900
13	nACo	Blue violet	39-41	1-4	0.5	1,200
14	nACRo	Grey	39-41	1-4	0.5	1,100
15	TiXCo3	Copper	42-44	1-4	0.4	1,100
16	TiXCo4	Grey	42-44	1-4	0.4	1,100
17	PSiX	Red brown	42-44	1-4	0.4	1,100
18	BorAC	Grey	38-40	1–5	0.5	900
19	TiBor	Satin silver	45	1–5	0.4	600
20	DLC1: TiCN + a-C:H:Me	Anthracite	36/20	1–3	0.1-0.2	400
21	DLC2: TiN + a-C:H:Si	Anthracite	> 25	1–3	0.1-0.2	400
22	DLC2: CrN + a-C:H(:Si)	Anthracite	> 25	1–3	0.1-0.2	400
23	DLC3: Cr + ta-C / a-C in Pi411	From rainbow colors to anthracite	45-50	0.3-1	0.1	450
24	nACoX	Dark grey	30-32	4-10	0.5	1,200

The given physical values may vary for different coating structures (mono-, gradient-, multi- and nanolayers).

If a coating can be deposited with ARC, SPUTTER and LACS $^{\otimes}$ option, the properties of the ARC option are given.

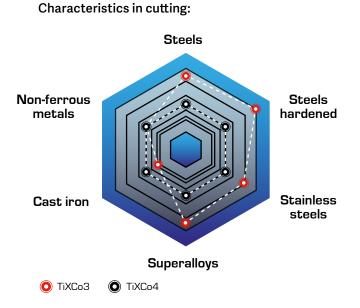
Signature and Dedicated Coatings


PLATIT's Signature Coatings are exclusively developed by our R&D teams using the unique features of the PLATIT technology. They combine years of experience and know-how in the field of coating development with the latest technical innovations. Our Signature Coatings promise the highest performance for their dedicated applications in the field of cutting, forming and tribological components. PLATIT customers can differentiate themselves from competitors and stand out from the market standard with the deposition of Signature Coatings.

Dedicated Coatings

Dedicated Coatings from PLATIT are tailored to individual needs of specific application and developed together with the customer for the customer. True to the open-source approach of PLATIT, the processes and recipes are open to engineers to enable innovations to accelerate. Our Dedicated Coatings allow a variety of process parameters, configurations of the cathodes, their positions, deposition technology as well as pre- and post-treatments, depending on the adaption needs. These coatings are not limited to a certain application, going further from the field of cutting, forming and tribological components towards further industries and requirements.

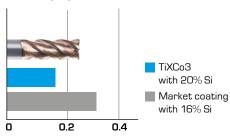
Development of new Dedicated Coatings


PLATIT's R&D team inspects the geometry of the tool and considers different parameters for the development of Dedicated Coatings.

Signature Coating TiXCo

TiXCo3 and TiXCo4

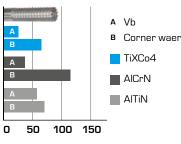
As our hardest nanocomposite, TiXCo3 is especially suitable for hard machining. It can be used at very high temperatures and is therefore suitable for finishing processes in milling, drilling and reaming. TiXCo4 is used for broadband applications.


Highlights:

- TiXCo3:
 - High surface quality
 - Extremely hard and very wear-resistant
 - For super-hard machining
- TiXCo4:
 - Wide range of application and use

Specifications	
Color	copper with TiXCo3 grey with TiXCo4
Nano-hardness [GPa]	42-44
Coefficient of friction [µ] PoD (at RT, 50% humidity)	0.4
Coating thickness [µm]	1-4
Max. service temperature [°C]	1,100
Coating temperature [°C]	450-500
111 PLUS G3	TiXCo3 (AlTi33, TiSi20)
411 PLUS ECO	TiXCo3 (Ti, Al, TiSi20)
411 PLUS TURBO	TiXCo3 (Ti, Al, TiSi20, AlTi33) TiXCo4 (Ti, Al, TiSi20, AlCr30)
1011 G4	TiXCo3 (TiSi20, AlTi40, TiSi25, AlTi40)

Milling in X210Cr13 with solid carbide end mill D6:


Wear Vb [µm]

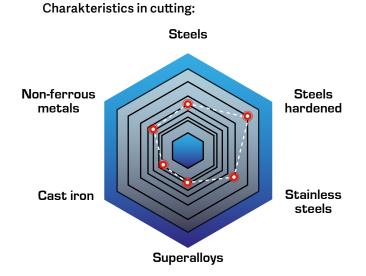
Tool: solid carbide end mill; D6 Workpiece material: X210Cr13; 1.2080; 64 HRC Cooling: dry air, 5 bar; ap = 0.09 mm; ae = 0.06 mm; n = 16 820 rpm; f = 0.1 mm / rot Source: South Korean tool manufacturer

Milling in SKD61 with solid carbide end mill D8:

Wear Vb [µm] after 27 m cutting length

Tool: solid carbide end mill; DB; cutting length = 27 m Workpiece material: SKD61; 54 HRC Cooling with emulsion; ap = 4 mm; ae = 0.03 mm; vc= 100 m / min Source: Chinese tool manufacturer

Calo 3 layers TiXCo3: TiN → AITi(Si)N → TiSiN TiXCo4: TiN → AICrTi(Si)N → TiSiN


Signature Coating PSiX

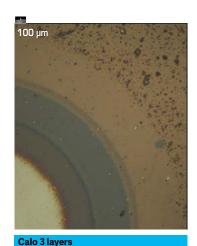
Universal hard machining coating

PSiX is a new PLATIT nanocomposite coating with a super-hard top layer. PSiX is based on TiXCo3 but has a silicon-free AITiN base. Therefore, the aluminum content of PSiX is higher, which increases the coating's thermal stability. The coating is temperature optimized and therefore excellent for hard machining processes like finishing and roughing.

Highlights:Thermal stability


- Optimized service temperature
- Low coating residual stress

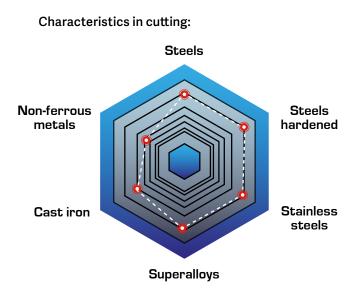
Specifications


Color	red brown
Nano-hardness [GPa]	42-44
Coefficient of friction [µ] PoD (at RT, 50% humidity)	0.4
Coating thickness [µm]	1-4
Max. service temperature [°C]	1,100
Coating temperature [°C]	450-500
411 PLUS ECO	(Ti, Al, TiSi20)
1011 G4	(TiSi20, AlTi40, TiSi25, AlTi40)

Ball nose end mill in 61 HRC:

Tool: ball nose end mill; D10 Workpiece material: 1.2379; 61 HRC ap = 0.2 mm; ae = 0.5 mm; vc = 182 m/min; fz = 0.14 mm Source: GFE, Germany

Optional TiN adhesion layer → AlTiN for reducing coating residual stress → AlTiN for high hardness → TiSiN nanocomposite top layer

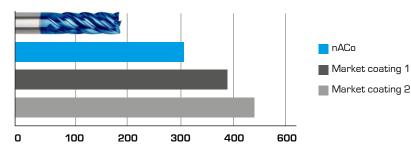

Signature Coating nACo

Universal nanocomposite for milling and drilling C-steels

nACo is one of PLATIT's best-known coating brands. It has proven itself on the market for over 20 years. nACo is an AlTiSi-based nanocomposite coating and performs best in the field of milling and drilling C-steels. The use of nACo provides excellent adhesion and good performance even for more unusual applications such as milling with coated ceramic tools and CBN tools.

Highlights:

- Nanocomposite with Si content
- High temperature stability
- Good hardness
- Reduces adhesion between cuttingedges and workpiece
- Versatile application possibilities



Specifications

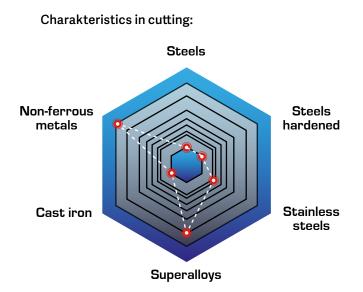
opeenioudione	
Color	blue violet
Nano-hardness [GPa]	39-41
Coefficient of friction [µ] PoD (at RT, 50% humidity)	0.4
Coating thickness [µm]	1-4
Max. service temperature [°C]	1,200
Coating temperature [°C]	400-500
111 PLUS G3	(AlSi12, Ti)
411 PLUS ECO	(Ti, AlSi18, -)
411 PLUS TURBO	(Ti, AlSi18, -, AlTi33)
1011 G4	(TiSi20, AlTi40, TiSi25, AlTi40)

Milling in SUS316 with solid carbide end mill D4:

Wear Vb [µm] after 480 milling operations

Werkzeug: Vollhartmetall-Schaftfräser; D4; z = 4; Schnittlänge = 6 mm Werkstückmaterial: SUS316 Kühlmittel; ap = 0,1 mm; ac = 4 mm; vc = 100 m/min; n = 8000 U/min; fz = 0,0625 mm/z; f = 0,2500 mm/U; vf = 2000 mm/min Quelle: Werkzeughersteller

Calo 3 layers AITi(Si)N is deposited on a TiN adhesion layer

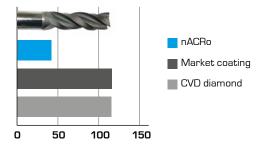

Signature Coating nACRo

Nanocomposite for non-ferrous materials

nACRo is PLATIT`s nanocrystalline nanocomposite. Based on CrN adhesion layer, it has a AlTiCrN microcrystalline core layer for toughness and a AlCrSiN top layer which guarantees thermal stability and wear resistance. Also, nACRo can also be deposited on sharp cutting edges for machining wood, aluminum alloy with Si content > 12% and titanium alloys such as TiAl6V4. Furthermore, nACRo can be used for aluminum injection molding.

Highlights:

- High resistance against temperature changes, oxidation and abrasive wear
- Specialist for machining abrasive aluminum alloys
- Usage also in chipless forming



Specifications

opeointoations	
Color	grey
Nano-hardness [GPa]	39-41
Coefficient of friction [µ] PoD (at RT, 50% humidity)	0.5
Coating thickness [µm]	1-4
Max. service temperature [°C]	1,100
Coating temperature [°C]	450-500
111 PLUS G3	(AlSi12, Cr)
411 PLUS ECO	(-, AlSi18, Cr)
411 PLUS TURBO	(-, AlSi18, Cr, AlTi33)

Milling in abrasive aluminum alloy:

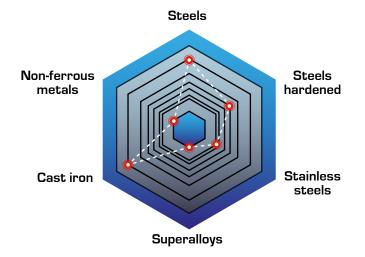
Flank wear (µm)

Tool: solid carbide endmill; D8; z=3; cutting length = 25 mm Workpiece material: EN AC 4700= <3.2583> AlSi12Cu Coolant: emulsion

vc = 250 mm/min; n = rpm; ap = 5 mm; ae= 1 mm; fz = 0.16 mm/z Source: GFE Schmalkalden

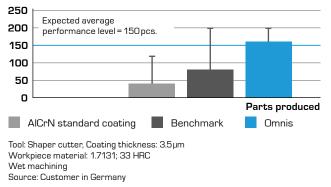
Calo 3 layers

CrN adhesion layer → AlTiCrN core layer → AlCrSiN top layer


Signature Coating Omnis

Universal high-performance AICrN-MB coating

Omnis is a universal high-quality coating developed for a wide range of applications for wet and dry machining:


- Optimized coating properties (hardness, modulus, morphology) with advanced plasma parameters
- Higher productivity and deposition rate through increased process performance
- Advanced BIAS strategy for optimized residual stress distribution
- Use of multi-alloyed targets for maximum productivity

Charakteristics in cutting:

With Omnis from PLATIT, variance between the tests is reduced:

Coating performance

Highlights:

- Universal applicability e.g., for roughing, skiving, hobbing, finishing, forming, micro tools
- Omnis also works in applications typically covered by AITiN and AICrSiN coatings
- Superior and predictable wear behavior
- Fast and economical with extremely short batch times, e. g., for 2.0 μm on endmill (3-fold rotation):
 - 4h with Pi111 PLUS G3
 - 4-5h with Pi411 PLUS ECO
 - 6-7h with PL1011 G4
 - or 4.0 µm on hob (2-fold rotation):
 - 5–6h with Pi111 PLUS G3
 - 5-7h with Pi411 PLUS ECO
 - 7-8h with PL1011 G4

Average cycle times in an ongoing production with max. number of cathodes in use.

Specifications

Color	grey/anthracite
Nano-hardness [GPa]	33–35
Coefficient of friction [µ] PoD (at RT, 50% humidity)	0.5
Coating thickness [µm]	0.3-6.0
Max. service temperature [°C]	1,100
Coating temperature [°C]	480
111 PLUS G3	(Al, Cr)
Pi411 PLUS ECO	(Al, AlCr30, Cr)
Pi411 PLUS ECO	(AlCr35, AlCr35, AlCr35)
1011 G4	(-, AlCr36, AlCr36, AlCr36)

Omnis

Signature Coating BorAC

Specialist for highly demanding machining

BorAC consists of a boron-doped AlCrN protective coating, which is especially suitable for crack inhibition and thus for high-speed applications such as transmission and gear cutting tools. BorAC delivers top performance under high loads, especially in gear hobbing and roughing (dry and wet). The coating can be deposited with PLATIT Pi411 PLUS ECO or Pi411 PLUS LACS[®] - with simultaneous ARC and SPUTTER processes.

Highlights:

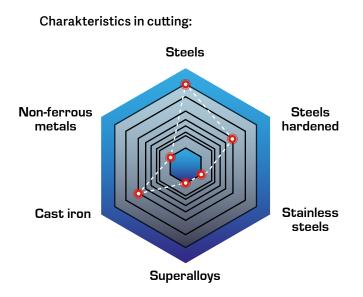
- Low coating residual stress
- Crack-resistant
- Minimizes crater wear
- Increases hardness and toughness

0 10

20

30 40

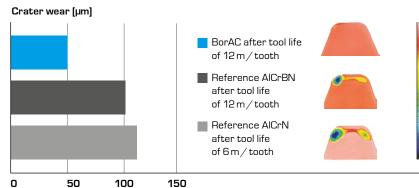
50


60

70 80 90

100

110


120

Specifications Color

Color	grey
Nano-hardness [GPa]	38-40
Coefficient of friction [µ] PoD (at RT, 50% humidity)	0.5
Coating thickness [µm]	1–5
Max. service temperature [°C]	900
Coating temperature [°C]	400-500
411 PLUS ECO	(Al, AlCrB20-10, Cr)
411 PLUS ECO	(AlCr35, AlCrB20-10, AlCr35)
1011 G4	(-, AlCr36, AlCrB20-10, AlCr36)

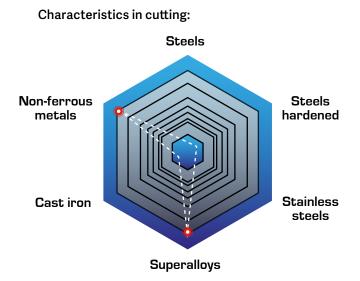
Effect of boron doping on crater wear in hobs:

Tool: HSS hob; D100

Workpiece material: 20 MnCr 5 Cooling air; mn = 4 mm; vc = 220 m/min, fa = -6.4 mm/rot Max. chip thickness hcu = 0.24 mm

Source: IFQ Magdeburg

CrN adhesion layer → AlCrN → AlCrBN

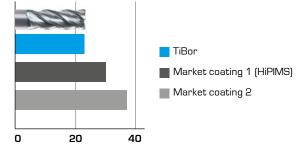

Signature Coating TiBor

LACS® coating for aluminum & titanium alloy machining

TiBor is one of the most efficient PLATIT LACS® coatings. The patented hybrid process of LARC® and central SPUTTERING SCIL® achieves a droplet-free surface which avoids built-up edges. Thus, the cutting edge will be sharp. TiBor performs very well in milling, drilling and reaming of aluminum, titanium and other non-ferrous metals like copper or brass.

Highlights:

- Use for applications which favor build-up edge like Ti6Al4V (grade 5 / TC4) or aluminum
- Highly accurate coating for precise machining
- Increased wear-resistance



Specifications

Color	satin silver
Nano-hardness [GPa]	45
Coefficient of friction [µ] PoD (at RT, 50% humidity)	0.4
Coating thickness [µm]	1–5
Max. service temperature [°C]	600
Coating temperature [°C]	200-400
411 PLUS LACS®	(Ti, -, -, TiB2 SCIL)

Rough milling in Ti6Al4V (TC4):

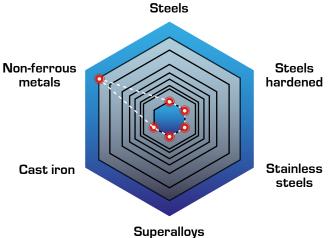
Wear Vb [µm] after 10 h

Tool: end mill Workpiece material: Ti6Al4V (TC4) Spindle speed: 6500 rpm Cutting speed vc: 1800 mm / min ap= 0.2 mm; ae=3.6 mm Source: Chinese tool manufacturer

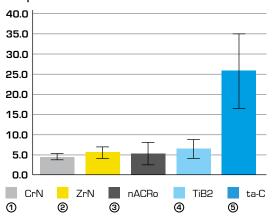
Signature Coating ta-C

Solution for graphite machining and for non-ferrous metals

ta-C belongs to the PLATIT DLC3 hydrogen-free coating generation with over 50% sp3 content. The high sp3 bond fraction results in a higher density, hardness (at ambient and elevated temperature), thermal stability, oxidation resistance, residual stress and lower thermal conductivity.

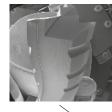

Highlights:

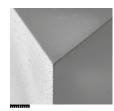
- Over 50 % sp3 content
- High density and hardness
- Thermal stability
- Oxidation resistance
- Low chemical affinity
- Low thermal conductivity
- Low roughness
- Stable process and low maintenance intervals


Color	From rainbow colors to anthracite
Nano-hardness [GPa]	35-55
Coefficient of friction [μ] PoD (at RT, 50% humidity)	0.1
Coating thickness [µm]	0.3–1
Max. service emperature [°C]	450
Coating temperature [°C]	< 100
411 PLUS LACS [®]	(-, -, Cr, C SCIL)

Charakteristics in cutting:

Machining AI alloys with Si content to 10–14%: ta-C with Pi411 PLUS LACS® features higher performance and the least torque value measured

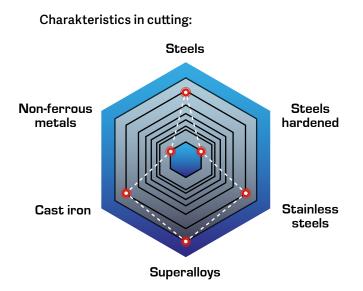

Complex Performace CP



Tool: aluminum step drill; GIW/PCG Workpiece material: GD-AISi9Cu3(Fe); 9.3 % Si Source: PLATIT AG and PannonPLATIT, Budapest, HU

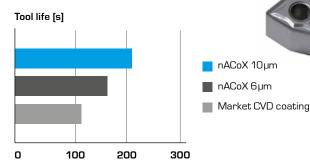
DLC3 coated end mill under scanning electron microscope:

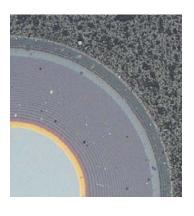
100 µm


Signature Coating nACoX

Oxide nitride coating special for inserts

nACoX is the specialist for turning and milling with inserts under dry or MQL (Minimum Quantiy Lubrication) conditions. Based on his four layers and thickness range, nACoX is comparable to CVD coatings while using lower coating temperature. By adding oxygen into the coating, nACoX has an improved oxidization resistance. It has a wide range of usage, beginning from milling cold work steel and ending with turning of Inconel 718.


- Wear protection with chemical and thermal isolation, avoiding oxygen diffusion
- Decreasing friction at temperatures over 1,000°C for reduction of build-up edges
- Sustainability by lower coating temperature than comparable CVD coatings


Specifications

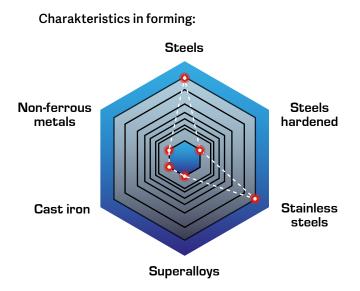
- P	
Color	dark grey
Nano-hardness [GPa]	30-32
Coefficient of friction [µ] PoD (at RT, 50% humidity)	0.5
Coating thickness [µm]	4-10
Max. service temperature [°C]	1,200
Coating temperature [°C]	550-600
411 PLUS TURBO & OXI	(Ti, AlSi18, AlCr45, AlTi33)

Turning of ductile nickel alloyed steel:

Tool: Turning insert WNMG 080412 Workpiece material: Ni-steel Coolant: MQL vc = 110mm/min; f = 0.4mm; ap = 0.2 mm Source: German automotive manufacturer

Calo 4 layers

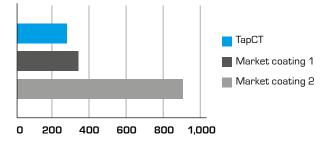
TiN adhesion layer → AITiN core layer → nACo core layer → AICrON top layer


Signature Coating TapCT

SCIL® coating for tap forming

TapCT is characterised by a very smooth surface thanks to the SPUTTER process SCIL® (SPUTTERED Coating Induced by Lateral Glow Discharge). Thus, during tap forming, the friction between the tool and the workpiece material and the sticking of the material will be reduced, and the process reliability increased. Furthermore, the excellent coating adhesion will increase the performance.

Highlights:


- High process reliability
- Lower machining torque
- High quality of the formed tap

Specifications	
Color	silver
Nano-hardness [GPa]	28-30
Coefficient of friction [µ] PoD (at RT, 50% humidity)	0.4
Coating thickness [µm]	1–5
Max. service temperature [°C]	700
Coating temperature [°C]	400-450
411 PLUS SCIL	(LGD, -, -, CrTi50 SCIL)

Tap forming in a carbon steel:

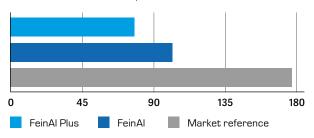
Torque after 2,000 holes [Ncm]

Tool: HSS forming tap M6x1 Workpiece material: carbon steel Coolant: emulsion vc = 20 mm/min; depth of the hole 9.0mm Source: Asia tool manufacturer

Dedicated Coating example FeinAl Plus

The next generation of the dedicated coating for fineblanking applications

Longer tool life and higher tool efficiency: partner companies Blösch, Feintool and PLATIT release FeinAl Plus, a new generation of dedicated PVD coatings for fineblanking.


FeinAl set the market standard for PVD coatings of fineblanking tools over many years through its dedicated coating design and seamless integration in a process chain of customized pre- and posttreatment steps. Based on the proven concept of FeinAl and by adding several years of continuous development, the project partners announce the next level of coatings for fineblanking applications: **FeinAl Plus**

Numerous innovations lead to the unmatched tool performance of FeinAl Plus:

- Dedicated AICr multilayer creating a tough and flexible coating structure
- Selective doping with boron, simultaneously reducing internal stress and increasing hardness
- Improved crack resistance and thus less chip welding inside the cracks
- Specialized edge rounding processes and post-polishing steps tailored to the substrate material, tool geometry, and coating design

Average wear comparison [µm]:

Average measured wear on tools from four different test series after up to 30,000 strokes

Tool: Internal forming punch; high-speed steel S390; hardness of 66 HRC Coating thickness: 3.5 μm

Punching material: quality C60E; thickness 3 mm; tensile strength 560 MPa Source: Feintool Technology AG

Blösch specializes in the processing and finishing of surfaces.

ငှာ FEINTOOL

Feintool is the leading manufacturer and expert in fineblanking.

PLATIT manufactures high-tech PVD and PECVD coating units for tools and components.

Specifications

Color	grey
Nano-hardness [GPa]	38-40
Coefficient of friction [µ] PoD (at RT, 50% humidity)	0.3
Coating thickness [µm]	2.0-4.0
Max. service temperature [°C]	900
Coating temperature [°C]	400-500
Pi411 PLUS ECO	(Al, AlCrB20-10, Cr)
411 PLUS LACS®	(-, Al, Cr, TiB2 SCIL)

VISIT US AT: WWW.PLATIT.COM

PLATIT AG

Headquarters Eichholzstrasse 9 CH-2545 Selzach info@platit.com + 41 32 544 62 00

PLATIT AG

Custom Coating Solutions (CCS) Champ-Paccot 21 CH-1627 Vaulruz info@platit.com +41 32 544 62 00

PLATIT a.s.

Production, R&D, Service, CEC Průmyslová 3020/3 CZ-78701 Šumperk info@platit.com + 420 583 241 588

PLATIT Advanced Coating Systems (Shanghai) Co., Ltd

Sales, Service, CEC No. 161 Rijing Road (Shanghai) PFTZ CN-200131 Pudong Shanghai china@platit.com + 86 2158 6739 76

PLATIT Inc.

Sales, Service, CEC 1840 Industrial Drive, Suite 220 Libertyville, IL 60048, US usa@platit.com +1 847 680 5270 Fax: +1 847 680 5271

PLATIT Scandinavia ApS

Sales Rabalderstraede 7 DK-4000 Roskilde scandinavia@platit.com + 45 46 74 02 38

COMPENDIUM

