Signature Coating TiBor

LACS ${ }^{\circledR}$ coating for aluminum \& titanium alloy machining

TiBor is one of the most efficient PLATIT LACS ${ }^{\circledR}$ coatings. The patented hybrid process of LARC ${ }^{\circledR}$ and central SPUTTERING SCIL® achieves a droplet-free surface which avoids built-up edges. Thus, the cutting edge will be sharp. TiBor performs very well in milling, drilling and reaming of aluminum, titanium and other non-ferrous metals like copper or brass.

Characteristics in cutting:

Superalloys

Highlights:

- Use for applications which favor build-up edge like Ti6AI4V (grade 5 / TC4) or aluminum
- Highly accurate coating for precise machining
- Increased wear-resistance

Specifications

Color	satin silver
Nano-hardness [GPa]	45
Coefficient of friction [μ] PoD (at RT, 50% humidity)	0.4
Coating thickness $[\mu \mathrm{m}]$	$1-5$
Max. service temperature $\left[{ }^{\circ} \mathrm{C}\right]$	600
Coating temperature $\left[{ }^{\circ} \mathrm{C}\right]$	$200-400$
411 PLUS LACS ${ }^{\oplus}$	(Ti,,,-- TiB2 SCIL)

Rough milling in Ti6AI4V (TC4):
Wear $\mathrm{Vb}[\mu \mathrm{m}]$ after 10 h

Tool: end mill
Workpiece material: Ti6Al4V (TC4)
Spindle speed: 6500 rpm
Cutting speed vc: $1800 \mathrm{~mm} / \mathrm{min} \mathrm{ap}=0.2 \mathrm{~mm} ; a e=3.6 \mathrm{~mm}$
Source: Chinese tool manufacturer

